Agrandissement sans couper les arbres
L’image ci-dessus représente une fontaine carrée située entre quatre arbres.
On souhaite faire un agrandissement de cette fontaine au même endroit sans couper les arbres.
Comment doubler la superficie de cette fontaine en gardant la même forme et sans couper les arbres ?
Voir la solution
tu laisses des iles pour les arbres 😉
Relis la question attentivement
au risque de paraitre bête pour quoi personne n’envisage la possibilité du rectangle ??
ajouter des triangle a chaque coté du carré , ça faira un losange
On retourne le carré de la fontaine d’un angle de 90 degré puis on étire les sommets du carré jusqu’à obtenir un carré ayant le double de la superficie du carré initial
Rajouter un triangle sur les 4 cotés
Bonjour a tous,
solution proposée pour la fontaine, tourner de 45° le carré de la fontaine, tanganter les coté de la fontaine aux arbres, et voilà, non!
Bonne soirée.
Il suffit de transformer le carré en carré plus grand par l’ajout de quatre triangles rectangles isocèles dont chaque hypoténuse va se confondre avec les quatre côtés actuels du petit carré.
Donc les quatre arbres vont se retrouver au milieu de chacun des nouveaux côtés, et non plus aux angles de l’ancien carré, et cela sans les couper, les abattre, les transplanter, les élaguer, les brûler ou quoi que ce soit…
Suffit de mettre le double SUR le principale
Si on appelle O le centre du carré, et M,N,P,Q ses symétriques par rapport à chaque côté du carré, on obtient un nouveau carré MNPQ dont l’aire est le double de celui de départ…
On double la surface du carré mais on oriente la fontaine à 90° afin que les pointes de celle-ci soient en haut, bas, droite et gauche
On fait pivoter le carré à 45° puis on l’agrandis
il faut que les angles de la fontaines soient disposés entre les arbres.
ex : si la diagonale de ce carré fait 2 m, en mettant les angles à l’extérieur de façon à faire un nouveau carré de 2 m de coté, on peut doubler la surface de la fontaine.